Almost submanifold structures

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Meromorphic Almost Rigid Geometric Structures

We study the local Killing Lie algebra of meromorphic almost rigid geometric structures on complex manifolds. This leads to classification results for compact complex manifolds bearing holomorphic rigid geometric structures.

متن کامل

Reducing almost Lagrangian structures and almost CR geometries to partially integrable structures

This paper demostrates a method for analysing almost CR geometries (H, J), by uniquely defining a partially integrable structure (H,K) from the same data. Thus two almost CR geometries (H,J) and (H ′, J ′) are equivalent if and and only if they generate isomorphic induced partially integrable CR geometries (H,K) and (H ′, K′), and the set of CR morphisms between these spaces contains an element...

متن کامل

Submanifold Sparse Convolutional Networks

Convolutional network are the de-facto standard for analysing spatio-temporal data such as images, videos, 3D shapes, etc. Whilst some of this data is naturally dense (for instance, photos), many other data sources are inherently sparse. Examples include penstrokes forming on a piece of paper, or (colored) 3D point clouds that were obtained using a LiDAR scanner or RGB-D camera. Standard “dense...

متن کامل

Nonexistence of Invariant Rigid Structures and Invariant Almost Rigid Structures

We prove that certain volume preserving actions of Lie groups and their lattices do not preserve rigid geometric structures in the sense of Gromov. The actions considered are the ”exotic” examples obtained by Katok and Lewis and the first author, by blowing up closed orbits in the well known actions on homogeneous spaces. The actions on homogeneous spaces all preserve affine connections, wherea...

متن کامل

Almost Complex Structures on the Cotangent Bundle

We construct some lift of an almost complex structure to the cotangent bundle, using a connection on the base manifold. This unifies the complete lift defined by I.Satô and the horizontal lift introduced by S.Ishihara and K.Yano. We study some geometric properties of this lift and its compatibility with symplectic forms on the cotangent bundle.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 1974

ISSN: 0022-040X

DOI: 10.4310/jdg/1214432551